GEOMETRIA EM OLIMPIADAS

(DESENVOLVIDO POR JUCIELE CARINE DECEZARE)

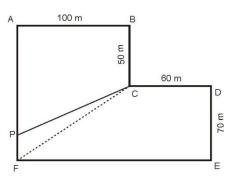
Conteúdo: Geometria.

Séries: Finais do ensino fundamental. **Material:** Fichas contendo as atividades.

Desenvolvimento: Consiste em uma atividade elaborada para ser desenvolvida em duplas ou em trios, e tem como objetivos auxiliar os alunos na preparação para participar de Olimpíadas de Matemáticas, as quais são promovidas em âmbito nacional e observa-se nas escolas pouco preparo para as mesmas, dessa maneira não sendo atingidos bons resultados.

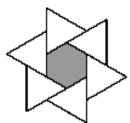
FICHAS

1. (OBM-2012) João e Maria herdaram um terreno, representado pelo polígono ABCDEF. Havia uma cerca reta separando o terreno em duas partes, mas como as áreas eram diferentes, João e Maria resolveram deslocá-la, mantendo-a reta, de forma que a extremidade em F fosse para o ponto P. Com isso, as duas áreas tornaram-se iguais. Supondo que os ângulos em A, B, D, E e F são retos, de quantos metros foi o deslocamento FP?



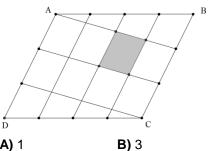
- **A)** 5
- **B)** 8
- **C)** 10
- **D)** 12
- **E)** 20

2. (OBM-2012) A figura mostra seis triângulos equiláteros com lados de comprimento 2 e um hexágono regular de lados de comprimento 1. Qual é a fração da área total que está pintada?



- **A)** $\frac{1}{9}$
- **B)** $\frac{1}{7}$
- **c**) $\frac{1}{6}$
- **D)** $\frac{1}{5}$
- **E)** $\frac{1}{4}$

3. (OBM-2012) Os lados AB e DC do paralelogramo ABCD foram divididos em 4 segmentos iguais. Os lados AD e BC foram divididos em 3 segmentos iguais. Os pontos de divisão foram conectados como indica a figura abaixo. Se a área de ABCD é 84, determine a área sombreada.

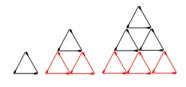


A) 1

C) 4

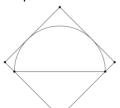
E)12

4. (OBMEP-2012)Renata montou uma sequência de triângulos com palitos de fósforo, seguindo o padrão indicado na figura. Um desses triângulos foi construído com 135 palitos de fósforo. Quantos palitos formam o lado desse triângulo?



A) 6

5. (OBM-2012) Na figura abaixo temos um semicírculo de raio 1 inscrito em um quadrado de modo que seu centro passe por uma das diagonais do quadrado. Qual é a área do quadrado?



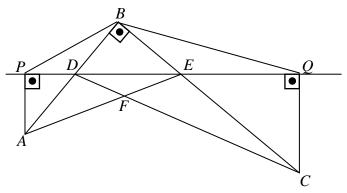
A)
$$\frac{3}{2} + \sqrt{2}$$

B)
$$1 + 2\sqrt{2}$$

B)
$$1+2\sqrt{2}$$
 C) $5+\frac{\sqrt{2}}{2}$ D) 4 E) $\frac{2}{3}+\sqrt{2}$

E)
$$\frac{2}{3} + \sqrt{2}$$

6. (OBM-2012) Na figura a seguir, o ângulo \hat{ABC} é reto; a reta r corta os segmentos ABe BC em D e E, respectivamente; as retas CD e AE se cortam em F; P e Q são as projeções ortogonais de A e C sobre a reta r, respectivamente.



Sendo o ângulo entre as retas *CD* e *AE* igual a $m(A\hat{F}D) = 40^{\circ}$, a medida de $P\hat{B}Q$, em graus, é

- **A)** 110
- **B)** 120
- **C)** 130
- **D)** 140
- **E)** 160

7. (OBMEP-2012) A figura foi formada por oito trapézios isósceles idênticos, cuja base maior mede 10 cm. Qual é a medida, em centímetros, da base menor de cada um desses trapézios?

- A) 4 B) 4,5 C) 5 D) 5,5 E) 6

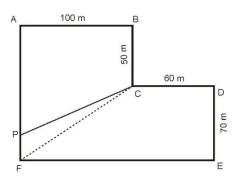
8. (OBM-2012) Renan desenhou um tabuleiro 4×4 , como mostra a figura abaixo, e contou todos os quadrados com lados paralelos aos lados do tabuleiro com vértices escolhidos dentre os vértices dos quadradinhos do tabuleiro e obteve 30 quadrados.

Que número Renan teria obtido se ele tivesse feito o mesmo com um tabuleiro 4 x 2012?

- **A)** 30180 **B)** 30115
- **C)** 20110
- **D)** 15090
- **E)** 8048

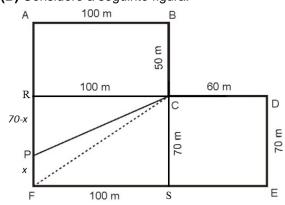
PERGUNTAS E RESPOSTAS

9. (OBM-2012) João e Maria herdaram um terreno, representado pelo polígono ABCDEF. Havia uma cerca reta separando o terreno em duas partes, mas como as áreas eram diferentes, João e Maria resolveram deslocá-la, mantendo-a reta, de forma que a extremidade em F fosse para o ponto P. Com isso, as duas áreas tornaram-se iguais. Supondo que os ângulos em A, B, D, E e F são retos, de quantos metros foi o deslocamento FP?



- **A)** 5
- **B)** 8
- **C)** 10
- **D)** 12
- **E)** 20

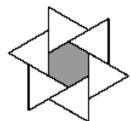
(B) Considere a seguinte figura:



Veja que RC = AB = FS = 100m, pois ABCR e ABSF são retângulos. De modo análogo, RF = DE = CS = 70m. Se tomarmos FP = x a igualdade das regiões ABCPA e DEFPC é dada por:

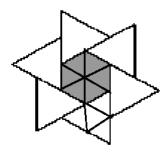
$$[ABCR] + [RCP] = [DESC] + [CSFP] \rightarrow 50.100 + \frac{(70 - x).100}{2} = 70.60 + \frac{(70 + x).100}{2} \rightarrow 5000 - 4200 = \frac{((70 + x) - (70 - x)).100}{2} \rightarrow 800 = \frac{2x.100}{2} \rightarrow 800 = 100.x \rightarrow x = 8$$

10. (OBM-2012) A figura mostra seis triângulos equiláteros com lados de comprimento 2 e um hexágono regular de lados de comprimento 1. Qual é a fração da área total que está pintada?



- **A)** $\frac{1}{8}$
- **c)** $\frac{1}{6}$ **D)** $\frac{1}{5}$ **E)** $\frac{1}{4}$

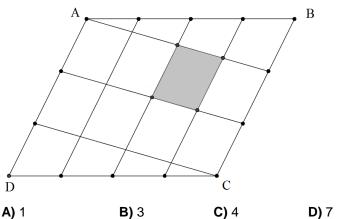
(D) Como o hexágono é regular e cada um dos triângulos é equilátero é possível dividir toda a figura em triângulos equiláteros de lado 1, como feito no hexágono e em um dos 6 triângulos na figura a seguir:



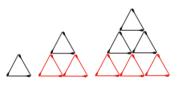
Assim, pode-se calcular a razão entre as áreas pela razão entre a quantidade de triângulos no hexágono e quantidade total, tendo assim:

 $\frac{(triang \ no \ hex)}{(triang \ no \ hex) + 6.(triang \ num \ traingulo)} = \frac{6}{6 + 6.4} = \frac{1}{1 + 4} = \frac{1}{5}$

11. (OBM-2012) Os lados *AB* e *DC* do paralelogramo *ABCD* foram divididos em 4 segmentos iguais. Os lados *AD* e *BC* foram divididos em 3 segmentos iguais. Os pontos de divisão foram conectados como indica a figura abaixo. Se a área de *ABCD* é 84, determine a área sombreada.



- 7 **E)**12
- **(D)** Considere o paralelogramo *AECF*. Como o lado $AF = \frac{2}{3}AD$, podemos concluir que a área do *AECF* vale $\frac{2}{3} \cdot 84 = 56$. Como este último está dividido em 8 paralelogramos iguais, podemos concluir que a área sombreada vale $\frac{1}{8} \cdot 56 = 7$.
- 12. (OBMEP-2012)Renata montou uma sequência de triângulos com palitos de fósforo, seguindo o padrão indicado na figura. Um desses triângulos foi construído com 135 palitos de fósforo.Quantos palitos formam o lado desse triângulo?



A) 6

B) 7

C) 8

D) 9

E) 10

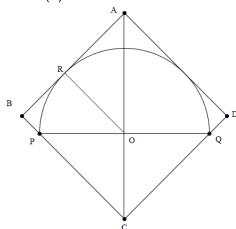
O primeiro triângulo da sequencia é formado por três palitos. Para $n \square \square 2$, o triângulo que ocupa a posição n na sequencia é formado acrescentando n triângulos iguais ao primeiro ao triângulo precedente. Logo, o total de palitos utilizados para construir o triângulo que ocupa a posição n na sequencia é 3.1+3.2+...+3n=3.(1+2+...+n)=3n(n+1)/2=135. Para saber em qual triângulo foram

usados 135 palitos, devemos resolver a equação $3n(n \Box 1)/2 \Box 135$, ou seja $p(n\Box 1)\Box 90$. Por inspeção, vemos que a raiz positiva dessa equação é n □ □ 9 ; logo o triângulo que estame procurando é o nono triângulo da sequencia, cujo lado tem 9 palitos.

13. (OBM-2012) Na figura abaixo temos um semicírculo de raio 1 inscrito em um quadrado de modo que seu centro passe por uma das diagonais do quadrado. Qual é a área do quadrado?

- B) $1+2\sqrt{2}$ C) $5+\frac{\sqrt{2}}{2}$ D) 4 E) $\frac{2}{3}+\sqrt{2}$

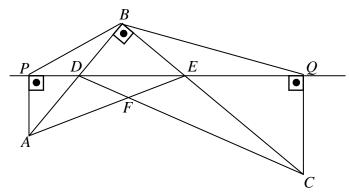
Alternativa (A)



Seja O o centro da semicircunferência descrita no enunciado, P e Q os pontos como na figura e R o ponto de tangência da semicircunferência com o lado AB. Temos que OR = 1 e $OR \perp AB$. Como O está na diagonal AC, temos que $O\widehat{A}B = 45^{\circ}$. Assim, $OA = OR\sqrt{2} = \sqrt{2}$. Além disso, OC é altura e mediana relativa à hipotenusa no triângulo retângulo PQC, cuja hipotenusa é 2. Assim, OC = 1. Portanto, a diagonal do

quadrado vale $1+\sqrt{2}$ e daí sua área é $\frac{1}{2}\cdot\left(1+\sqrt{2}\right)^2=\frac{3+2\sqrt{2}}{2}=\frac{3}{2}+\sqrt{2}$.

14. (OBM-2012) Na figura a seguir, o ângulo \hat{ABC} é reto; a reta r corta os segmentos AB e BC em D e E, respectivamente; as retas CD e AE se cortam em F; P e Q são as projeções ortogonais de *A* e *C* sobre a reta *r*, respectivamente.



Sendo o ângulo entre as retas CD e AE igual a $m(\hat{AFD}) = 40^{\circ}$, a medida de \hat{PBQ} , em graus, é

- **A)** 110
- **B)** 120
- **C)** 130
- **D)** 140
- **E)** 160
- (C) Como $A\hat{P}E = A\hat{B}E = 90^\circ$, o quadrilátero APBE é inscritível. Da mesma maneira, o quadrilátero DBQC é inscritível. Assim, temos que $P\hat{B}A = P\hat{E}A$ e que $Q\hat{B}C = Q\hat{D}C$. Daí, $P\hat{B}Q = P\hat{B}A + 90^\circ + Q\hat{B}C = P\hat{E}A + 90^\circ + Q\hat{D}C$. Mas no triângulo DEF, temos pelo teorema do ângulo externo que $40^\circ = A\hat{F}D = P\hat{E}A + Q\hat{D}C$. Assim, $P\hat{B}Q = 90^\circ + 40^\circ = 130^\circ$.
- **15.** (OBMEP-2012) A figura foi formada por oito trapézios isósceles idênticos, cuja base maior mede 10 cm. Qual é a medida, em centímetros, da base menor de cada um desses trapézios?

A) 4

B) 4,5

C) 5

D) 5,5

E) 6

ALTERNATIVA C

A figura ao lado mostra uma parte do hexágono formada por três trapézios. Prolongamos os segmentos AF e DE para obter os pontos P e Q, como indicado. Como os trapézios são idênticos, os ângulos assinalados são iguais; segue que AP e QD são paralelos. Como PD e EF, sendo bases de um trapézio, também são paralelos, segue que PDEF é um paralelogramo; em particular, temos PF = DE. Da igualdade dos trapézios temos AF = DE = EF e concluímos que AP = 2EF. Notamos agora que APCB também é um paralelogramo; logo BC = AP = 2EF e como BC = 10 segue que EF = 5. Outra solução é a seguinte. Como os trapézios são idênticos, o hexágono que eles formam é regular. Como o ângulo interno a desse hexágono mede 120° , o ângulo b mede $120^\circ/2=60$. Logo o triângulo ABC é equilátero; como AC = CD temos BC = CD e segue que o paralelogramo BCDE é um losango. Assim, B é o ponto médio de AE e então $AC \square BE \square 2$ AE = 12 EE2 EE3 EE4 EE5 EE6 EE9 EE9 EE9 EE9 o ponto médio de EE9 EE9 EE9 EE9 EE9 EE9 o ponto médio de EE9 EE9 o ponto médio de EE9 o ponto médio

16. (OBM-2012) Renan desenhou um tabuleiro 4×4 , como mostra a figura abaixo, e contou todos os quadrados com lados paralelos aos lados do tabuleiro com vértices escolhidos dentre os vértices dos quadradinhos do tabuleiro e obteve 30 quadrados.

Que número Renan teria obtido se ele tivesse feito o mesmo com um tabuleiro 4×2012 ? A) 30180 B) 30115 C) 20110 D) 15090 E) 8048

- (C) Vamos contar os quadrados de tamanhos $1\times1,2\times2,3\times3$ e 4×4 .
- i) Para cada linha do tabuleiro, temos 2012 quadrados $^{1\times1}$. Logo, o total de quadrados $^{1\times1}$ é : 2012×4
- ii) Para cada duas linhas consecutivas do tabuleiro, temos 2011 quadrados $^{2\times2}$. Logo, o total de quadrados $^{2\times2}$ é : $^{2011\times3}$.
- iii) Para cada três linhas consecutivas do tabuleiro, temos 2010 quadrados 3×3 . Logo, o total de quadrados 3×3 é : 2010×2 .
- iv) Para cada quatro linhas consecutivas do tabuleiro, temos 2009 quadrados $^{4\times4}$. Logo, o total de quadrados $^{4\times4}$ é : 2009×1 .

Total: $2012 \times 4 + 2011 \times 3 + 2010 \times 2 + 2009 \times 1 = 20110$